Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Commun Biol ; 6(1): 368, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2296483

ABSTRACT

COVID-19 mRNA vaccines induce protective adaptive immunity against SARS-CoV-2 in most individuals, but there is wide variation in levels of vaccine-induced antibody and T-cell responses. However, the mechanisms underlying this inter-individual variation remain unclear. Here, using a systems biology approach based on multi-omics analyses of human blood and stool samples, we identified several factors that are associated with COVID-19 vaccine-induced adaptive immune responses. BNT162b2-induced T cell response is positively associated with late monocyte responses and inversely associated with baseline mRNA expression of activation protein 1 (AP-1) transcription factors. Interestingly, the gut microbial fucose/rhamnose degradation pathway is positively correlated with mRNA expression of AP-1, as well as a gene encoding an enzyme producing prostaglandin E2 (PGE2), which promotes AP-1 expression, and inversely correlated with BNT162b2-induced T-cell responses. These results suggest that baseline AP-1 expression, which is affected by commensal microbial activity, is a negative correlate of BNT162b2-induced T-cell responses.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , COVID-19 Vaccines , BNT162 Vaccine , Transcription Factor AP-1 , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Viral , RNA, Messenger/genetics
2.
Clinical Immunology Communications ; 2021.
Article in English | ScienceDirect | ID: covidwho-1588091

ABSTRACT

Pre-existing SARS-CoV-2-specific T cells, but not antibodies, have been detected in some unexposed individuals. This may account for some of the diversity in clinical outcomes ranging from asymptomatic infection to severe COVID-19. Although age is a risk factor for COVID-19, how age affects SARS-CoV-2-specific T cell responses remains unknown. We found that pre-existing T cell responses to specific SARS-CoV-2 proteins, Spike (S) and Nucleoprotein (N), were significantly lower in elderly donors (>70 years old) than in young donors. However, substantial pre-existing T cell responses to the viral membrane (M) protein were detected in both young and elderly donors. In contrast, young and elderly donors exhibited comparable T cell responses to S, N, and M proteins after infection with SARS-CoV-2. These data suggest that although SARS-CoV-2 infection can induce T cell responses specific to various viral antigens regardless of age, diversity of target antigen repertoire for long-lived memory T cells specific for SARS-CoV-2 may decline with age;however, memory T cell responses can be maintained by T cells reactive to specific viral proteins such as M. A better understanding of the role of pre-existing SARS-CoV-2-specific T cells that are less susceptible to age-related loss may contribute to development of more effective vaccines for elderly people.

4.
Sci Rep ; 11(1): 9475, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216469

ABSTRACT

During August 2020, we carried out a serological survey among students and employees at the Okinawa Institute of Science and Technology Graduate University (OIST), Japan, testing for the presence of antibodies against SARS-CoV-2, the causative agent of COVID-19. We used a FDA-authorized 2-step ELISA protocol in combination with at-home self-collection of blood samples using a custom low-cost finger prick-based capillary blood collection kit. Although our survey did not find any COVID-19 seropositive individuals among the OIST cohort, it reliably detected all positive control samples obtained from a local hospital and excluded all negatives controls. We found that high serum antibody titers can persist for more than 9 months post infection. Among our controls, we found strong cross-reactivity of antibodies in samples from a serum pool from two MERS patients in the anti-SARS-CoV-2-S ELISA. Here we show that a centralized ELISA in combination with patient-based capillary blood collection using as little as one drop of blood can reliably assess the seroprevalence among communities. Anonymous sample tracking and an integrated website created a stream-lined procedure. Major parts of the workflow were automated on a liquid handler, demonstrating scalability. We anticipate this concept to serve as a prototype for reliable serological testing among larger populations.


Subject(s)
Blood Specimen Collection/methods , COVID-19 Serological Testing/methods , Antibodies, Viral/blood , Blood Specimen Collection/instrumentation , Coronavirus Infections/blood , Coronavirus Infections/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Phlebotomy/methods , Reproducibility of Results , Self-Testing , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL